ST. ANNE’S COLLEGE OF ENGINEERING AND TECHNOLOGY

(Approved by AICTE, New Delhi. Affiliated to Anna University, Chennai)
Accredited by NAAC
ANGUCHETTYPALAYAM, PANRUTI - 607 106.

LAB MANUAL

®

6\

CCS336 - CLOUD SERVICE MANAGEMENT
LABORATORY

Regulation 2021
Year / Semester : 111/ VI

PREPARED BY

Ms. K. KAYALVIZHI, M.E.,
Assistant Professor / CSE Dept

EX.NO:01 Create a Cloud Organization in AWS/Google Cloud/or any equivalent Open-Source cloud
software like OpenStack, Eucalyptus, Open Nebula with Role-based access control

Date:

Aim:
To create a Cloud Organization in AWS with Roll-based access control.

Procedure:

Tocreate an organization in AWS with role-based access, you can follow these general steps:

1. Create an AWS account: If you don't already have an AWS account, you'll need to create one. This will
beyour management account and the root of your organization.

i35 Sorvices | @ aws management

Services
Features (411)
Resources ' New =
Documentation (593,701)
Knowledge Ar

Events (896)

Tutorials (239)

Features

2. Enable AWS Organizations: From the AWS Management Console, navigate to the AWS
Organizations service and enable it. This will create the organization with your management account
as the master account.

AWS Organizations > AWS accounts

AWS accounts Add an AWS sccount

The accounts listed below are members of your organization. The organization's management account is responsidle for paying the bills for zll
accounts In the organization. You can use the tools provided by AWS Crganizations to centrally manage these accounts. Leam mora [

Organization Actions ¥ |

Organizational structure Account created/joined date

¥ [Ch Root
]

iy sl Joinad 2024/01/29
]

3. Create OUs (Organizational Units): You can create one or more OUs to organize your accounts. For
example, you might create separate OUs for different departments or environments (e.g., production,
staging, development).

drganizations D AWS ac it > Root > Create organizational unit

Create organizational unit in Root

An erganizational unit QU] can contain both accousts and cther OUs. This ensbles you to ceate an inv chy. The structure has @

root at the top and branches of OUs that reach down. The branches end in accounts that act as the eam more [5
Details

Organizational unit name

Tags

Cancel Create organizational unit

Create member accounts: You can create new AWS accounts and invite existing accounts to join
yourorganization as member accounts. You can add these accounts to the appropriate OUs.

Create service control policies (SCPs): SCPs are policies that you can attach to OUs or individual
accountsto define the maximum set of actions that can be performed on resources in those OUs or accounts.
This allows you to enforce role-based access and other security policies across your organization.

IAM > Dashboard

IAM Dashboard

Security recommendations @ (]

© Root user has MFA

uthentication (MFA) for the root user improves se

© Root user has no active access keys

IAM resources

Resources in this AWS Account

6. Assign 1AM roles: You can create IAM roles in your management account and delegate specific
permissions to them. You can then assume these roles from your member accounts to perform actions on
resources in the management account or other member accounts.

Configure permissions: You can use |AM policies to control access to AWS services and resources.
You can attach these policies to IAM users, groups, or roles in your management account or member
accounts.

To create a role with specific permissions, you can follow these steps:

Open the IAM console in your management account.

Create a new role and choose the appropriate trusted entity (e.g., another AWS account, an AWS service,
or your AWS Organizations).

Define the permissions for the role by attaching an AM policy or a service control policy (SCP).

Save the role and note down the ARN (Amazon Resource Name) of the role.

In the AWS Organizations console, attach the role to the appropriate OU or account.

In the member account, assume the role to perform actions on resources in the management account or
other member accounts.

AM > Roles

Roles (9) 1 Create role

Role name A Trusted antities

56 days ago

2 hours ago

Result:

Thus, the Cloud Organization was created in AWS with Role-Based Access Control was implemented
successfully.

EX.NO:02 Create a Cost-model for a web application using various services and do Cost-benefit analysis
Date:

Aim:

To create a Cost-model for a web application using various services and make a analysis for Cost-benefit.

Procedure:

Creating a cost-model for a web application in AWS involves estimating the costs of using various AWS
services for the application. Here's a general process to create a cost-model and do cost-benefit analysis:

1. Identify the AWS services used by the web application: Some common services used by web
applications include Amazon S3, Amazon EC2, Amazon RDS, Amazon APl Gateway, AWS
Lambda,Amazon DynamoDB, Amazon CloudFront, and Amazon SNS.

AWS Cloud

Amazon| Cognito

i
D o
B8 =@

EC2 Instance
Clients Application Load

Balancer {:}

EC2 Instance

2. Estimate the costs of each service: You can use the AWS Pricing Calculator to estimate the costs
of each service. The pricing calculator allows you to enter the specific of your usage, such as the
number of instances, storage size, and data transfer.

Create a cost-model: Once you have estimated the costs of each service, you can create a cost- model
that summarizes the total costs. You can use a spreadsheet or a cloud cost management tool to create
the cost-model.

Do cost- benefit analysis: After creating the cost-model, you can do a cost-benefit analysis to
determine if the benefits of using AWS services outweigh the costs. You can compare the costs of
using AWS services to the costs of running the application on-premises or using a different cloud
provider.

Program:
Python code:

import boto3

Create a session using your AWS

credentialssession = boto3.Session(
aws_access_key_id="YOUR_ACCESS_KEY"
aws_secret_access_key="YOUR_SECRET_K

EY', region _ name="us-east-1'

Create a Cost Explorer client cost
_explorer = session . client('c €)
Define the time period for the cost-
modeltime _ period = {
Time Unit":
'MONTHS!, ‘Start':
'2022-01-01",
'End": '2022-12-31'

Define the granularity of the cost-model

granularity = 'DAILY"

Define the metrics for the cost-model

metrics = ['Blended Cost', 'UsageQuantity']

Define the grouping for the cost-model

Group _ by =[{'Type": 'DIMENSION', 'Key": 'SERVICE'}]

Get the cost and usage data

response = cost _ explorer . get _ cost _ and
_usage (Time Period = time _ period,
Granularity=granularity,
Metrics=metrics,
Group By = group
_by

Print the cost and usage data

print(response)

Output:
{
'‘Results By Time'": [
{
Time Period": {
'Start": '2022-01-01",
‘End'; '2022-12-31',
‘Time Unit': 'MONTHS'
}
'‘Groups": [
{
'Keys': [
'AmazonEC2

1
'Metrics": {
'‘Blended Cost":
{
'Amount': '1234.56',
‘Unit": 'USD'
}

'UsageQuantity":
‘Amount': '1000.0',

'Unit"; 'Hours'

'Keys'": ['"AWS Lambda'
1.
'‘Metrics': {
'‘Blended Cost'":
{
‘Amount': '789.0',
‘Unit": 'USD'
%
'‘UsageQuantity'": {
‘Amount': '5000000",

'Unit": 'requests'

'Response Meta data': {
'Request Id"; 'abcdefg-1234-5678-90ab-cdefghijkl’,

'HTTP Status Code'; 200,
'HTTP Headers': {
‘content-type': 'text/ xml ; charset=UTF-

8','content-length’: '1234',

‘date": "Tue, 15 Feb 2022 12:34:56 GMT"

1
'Retry Attempts': 0

Result:

Thus, Cost-model for a web application using various services created and analysis was implemented
successfully.

EX.NO:03 Create alerts for usage of Cloud Resources

Date:

Aim:

To create alerts for usage of Cloud Resources.

Procedure:

To create alerts for usage of Cloud resources in AWS, you can use Amazon CloudWatch and AWS Lambda.
Here's an example code that creates an alert for Amazon S3 bucket usage:

Create an IAM role for the Lambda function with the following policy.
Create a new Lambda function with the following code.

Set the Lambda function trigger to run every day at a specific time.
Create a CloudWatch alarm with the following code.

Program:

Policy for Role: (JSON code)

{
"Version": "2012-10-17",

"Statement™: [
{

"Effect": "Allow",

"Action": [
"cloud watch :Put Metric Alarm",
"cloud watch :Describe Alarms",
"cloud watch :Get Metric Data",
"cloud watch : Get Metric
Statistics”

1

"Resource™: "*"

"Effect™: "Allow",
"Action": [

"s3: Get Bucket Size"
1
"Resource™: [

"arn : aws:s3:::your-bucket-name"

New Lambda Function:

(Python)import boto3

import json

s3 = boto3.client('s3")

cloud watch = boto3.client('cloud watch")

def lambda _ handler (event, context):

try:
response = s3. head _ bucket (Bucket="your-bucket-

name")size = response ['Content Length']

cloud watch . put _ metric _ data(
Namespace='S3',
Metric Data= [
{
‘Metric Name: 'Bucket
Size','Dimensions': [
{

‘Name': 'Bucket Name',

‘Value': 'your-bucket-name'

}
1
‘Timestamp": datetime. date time.
now(),'Value': size,

'Unit"; 'Bytes'

)

except Exception as €:

print(e)

Cloud Watch Alarm:

(Python)import boto3

import datetime

cloud watch = boto3.client('cloud watch")

def create _ alarm ():
try:

cloud watch. Put _ metric _ alarm (Alarm
Name="'S3BucketSizeAlarm', Alarm Description="Alarm if
S3 bucket size exceeds 10 GB',Namespace='S3',
Metric Name="Bucket
Size', Statistic='Sample
Count', Period='86400',
Evaluation Periods="1',
Threshold='10000000000',

Comparison Operator="Greater Than Threshold',

Alarm Actions=[
‘arn:aws:sns:us-east-1:123456789012:your-sns-topic-arn’

1.

Dimensions=[

{

‘Name': 'Bucket Name',

‘Value': 'your-bucket-name'
+
I

Alarm Description="Alarm if S3 bucket size exceeds 10 GB'

)

except Exception as €:

print(e)

create _alarm ()

Output:

AWS Free Tier limit alert inbox »

freetier@costalerts.amazonaws.com

aws

AWS Free Tier usage limit alerting via AWS Budgets 01/28/2024

Dear AWS Customer,
Your AWS account 132509287588 has exceeded 85% of the usage limit for one or more AWS Free Tier-eligible services for the month of January

AWS Free Tier Usage as of

Product 12812024

Usage Limit AWS Free Tier Usage Limit

30.0 GB-Mo for free for 12 months as part of AWS Free Usage Tier (Global-
EBS:VolumeUsage)

750.0 Hrs for free for 12 months as part of AWS Free Usage Tier (Global-
BoxUsage:freetier.micro)

AmazonEC225.64516088 GB-Mo 30 GB-Mo

AmazonEC2645 Hrs 750 Hrs

Result:

Thus, usage alerts for cloud resources were implemented successfully.

EX.NO:04 Create Billing alerts for your Cloud
Date: Organization

Aim:

To create billing alerts for your Cloud Organization.

Procedure:

To create billing alerts for your Cloud Organization in AWS, you can follow these steps:

Signin to the AWS Management Console and navigate to the Billing and Cost Management service.
In the navigation pane, choose "Budgets".

Click on "Create budget" and select "Cost budget".

Provide a name and description for your budget.

Choose the time period for your budget (e.g., Monthly, Quarterly, Annually).

Configure the budget threshold. You can choose to set a fixed budget amount or a percentage of your
actual costs.

Configure the alerts. You can choose to receive alerts via email or Amazon SNS.

Program:
AWS CLLI: (Bash)

aws budgets create-budget --account-id 123456789012 --budget \'{
"Budget Name™ "My Cost
Budget","Budget
Limit": {
"Amount": "1000",
"Unit": "USD"
}
"Cost
Filters": {
"Linked
Account™: ["123456789012"]
}
"Cost Types": {
"Include Tax™

true,

"Include Subscription™: true,
"Use Blended": false, "Include
Refund™: true, "Include Credit™:
true, "Include Upfront™: true,
"Include Recurring": true,
"Include Other Subscription™:
true, "Include Support™ true,
"Include Discount": true, "Use
Amortized™: false
}
"Time Unit": "MONTHLY",
"Budget Type™": "COST",
“Notifications With Subscribers™:
{
“Notification"; {
"Notification Type™: "ACTUAL",
"Comparison Operator":
"GREATER_THAN","Threshold": 100,
"Threshold Type™:
"PERCENTAGE", "Notification
State": "ALARM"

}

"Subscribers": [

{
"Subscription Type": "EMAIL",

"Address": "you@example.com

}

mailto:you@example.com

Billing & Cost Management Dashboard

Billing

Bills Getting Started with AWS Billing & Cost Management

« Manage your costs and usage using AWS Budgets
Payments

« Visualize your cost drivers and usage trends via Cost Explorer
Credits « Dive deeper into your costs using the Cost and Usage Reports with Athena integration
Purchase orders « Learn more: Check out the AWS What's New webpage

Cost & Usage Reports Do you have Reserved Instances (RIs)?

« Access the RI Utilization & Coverage reports—and RI purchase recommendations—via

Cost Categories A
= Cost Explorer.

Cost allocation tags

Mandoenent Spend Summary Cost Explorer
Cost Explorer == S %
ome to the AWS Billing & Cost Manag nsole. Your last month, month-to-date, and month-end
Budgets forecasted costs appear below

Budgets Reports
Current month-to-date balance for September 2021

$92.47

$600

Savings Plans ('

Billing preferences
Payment methods

Consolidated billing (7'
$415.81
Tax settings

$288.85

Result:

Thus, billing alerts for your Cloud Organization were implemented successfully.

EX.NO:05 | Compare Cloud cost for a simple web application across AWS, Azure and GCP and suggest
thebest one

Date:

Aim:

To compare Cloud cost for a simple web application across AWS, Azure and GCP and suggest the best one

Observation:

1. AWS: AWS offers a rich array of tools, including databases, analytics, management, 10T, security, and
enterprise applications. AWS introduced per-second billing in 2017 for EC2 Linux-based instances
andEBS volumes.

Azure: Azure has slightly surpassed AWS in the percentage of enterprises using it. Azure also offers
various services for enterprises, and Microsoft’s longstanding relationship with this segment makes it
an easy choice for some customers. While Azure is the most expensive choice for general-purpose
instances, it’s one of the most cost-effective alternatives to compute-optimized instances.

Google Cloud Platform (GCP): GCP stands out thanks to its almost limitless internal research and
expertise. GCP is different due to its role in developing various open-source technologies. Google
Cloud is much cheaper than AWS and Azure for computing optimized cloud-based instances.

The best platform depends on your specific needs and requirements. If you need a wide array of tools and services,
AWS might be the best choice. If you’re looking for enterprise services and have a longstanding relationship
with Microsoft, Azure could be your best bet.

Conclusion:

If you prioritize innovation and open-source technologies, GCP could be the right choice. For compute-
optimized instances, GCP seems to be the most cost-effective. However, it’s essential to understand your
requirements fully before making a decision.

Result:

Thus, the comparison for Cloud cost for a simple web application across AWS, Azure and GCP were
implemented successfully.

	Aim:
	Procedure:
	Result:
	Aim: (1)
	Procedure: (1)
	Program:
	Output:
	Result: (1)
	Aim: (2)
	Procedure: (2)
	Program: (1)
	Output: (1)
	Aim: (3)
	Procedure: (3)
	Program: (2)
	Output: (2)
	Aim: (4)
	Observation:
	Conclusion:
	Result: (2)

